
2024 Minor Programme HAN University of Applied Sciences, Data Driven Decision Making

in Businesses

AutoDev: An LLM-Driven Automatic

Developer

A report on the development and iterations of an Autonomous AI for

Ubuntu VM

Abstract

This report details the development of an autonomous AI using GPT-4o to control an Ubuntu

VM via SSH. The project includes multiple iterations and enhancements aimed at improving

the AI's capabilities and efficiency in an SSH-terminal environment.

Demo Video:

https://youtu.be/AQcQk633QTk

Lars Cornelissen, l.cornelissen5@student.han.nl, https://larscornelissen.com/

HAN University of Applied Sciences

Date: 16-06-202

https://youtu.be/AQcQk633QTk
mailto:l.cornelissen5@student.han.nl
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

2

Table of Contents
Abstract .. 1

Demo Video: .. 1

Personal Notes: .. 3

Glossary: .. 3

Introduction .. 5

Why would this product be useful? ... 6

Literature Review... 7

AI-Driven Automation ... 7

Large Language Models (LLMs) ... 7

Automation in Software Development .. 7

Challenges and Considerations .. 7

Methodology .. 8

Initial Setup and Version 1 ... 8

Enhanced Memory and Storage ... 8

Version 2 - GUI Interaction.. 9

Return to SSH .. 10

Implementation Details .. 11

Memory and Logs .. 11

API Integration... 12

Thread Management .. 13

Results and Discussion .. 14

Performance ... 14

Key Achievements ... 14

Challenges and Solutions ... 15

User Experience ... 15

Summary of Results ... 15

Conclusion ... 16

Key Findings .. 16

Challenges Addressed .. 16

Future Work ... 16

Final Thoughts ... 16

References .. 17

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

3

Personal Notes:

1. I have been an OpenAI API Private beta tester since November 2021, that’s why I

picked to use OpenAI’s platform for the LLM for this project. This project wasn’t

focused on picking the right LLM for the job, but for future projects it might be

valuable to do more research into the capabilities of other LLM’s.

2. I went to multiple voluntary courses this semester, including the ethics course, process

mining bootcamp and the NEDAP trip. For this project I didn’t do research into the

ethics of making a replacement for software engineers. If I choose to grow this project

bigger, I will make sure to include that into my next research.

For the celonis report, see My Celonis Porfolio

3. The sourcecode is currently closed-source on

https://github.com/ScorchChamp/AutoDev. Please send me a request for access if you

want to access it.

Glossary:

1. Large Language Models (LLMs): A type of artificial intelligence designed to

understand and generate human language. Examples include GPT-4o by OpenAI.

LLMs are trained on extensive datasets and can perform tasks like text generation,

translation, and summarization.

2. SSH (Secure Shell): A network protocol that provides a secure channel over an

unsecured network, commonly used for remote login and command execution on

servers. It ensures the confidentiality, integrity, and authenticity of data.

3. Paramiko: A Python library that facilitates the creation and management of SSH

connections, supporting both client and server functionalities. It provides tools for

executing commands and transferring files securely over SSH.

4. MongoDB: A NoSQL database that stores data in a flexible, JSON-like format.

Known for its scalability and performance, MongoDB is used to handle large volumes

of data efficiently.

5. PyAutoGUI: A Python module used for programmatically controlling the mouse and

keyboard. It enables automation of GUI interactions by simulating user inputs like

clicks and keystrokes.

6. OCR (Optical Character Recognition): A technology used to convert different types

of documents, such as scanned paper documents or images, into editable and

searchable data. In this project, OCR was used to recognize text on the screen.

7. Flask: A lightweight WSGI web application framework in Python. It is designed to

make getting started with web development quick and easy, with the ability to scale

up to complex applications. In this project, Flask was used to develop an API for

executing mouse and keyboard actions.

8. JSON (JavaScript Object Notation): A lightweight data-interchange format that is

easy for humans to read and write, and easy for machines to parse and generate. JSON

https://larscornelissen.com/
https://larscornelissen.com/
Celonis.pdf
https://github.com/ScorchChamp/AutoDev

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

4

was used to structure the responses and commands exchanged between the AI and the

SSH interface.

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

5

Introduction

Artificial Intelligence (AI) and machine learning have significantly advanced over the past

decade, enabling the development of sophisticated systems capable of performing complex

tasks autonomously. This report focuses on the creation of an autonomous AI developer,

referred to as "Autodev," using GPT-4o. The primary objective of Autodev is to control an

Ubuntu virtual machine (VM) via SSH, automating various tasks within a terminal

environment.

The motivation behind this project stems from the increasing need for automation in software

development. By leveraging AI, we aim to reduce human intervention, improve efficiency,

and enhance the accuracy of routine operations. This project explores multiple iterations,

each improving upon the previous one, to achieve a robust and effective solution.

The following sections of this report will detail the development process, including the initial

setup, enhancements in memory management, GUI interaction attempts, and the final SSH-

based implementation. Additionally, the report will discuss the challenges encountered,

solutions implemented, and the overall performance of the system.

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

6

Why would this product be useful?

• Automated software updates, security patches, and system monitoring can save

countless hours for IT staff, translating into substantial cost savings.

• Scarcity of Skilled IT Professionals: There is a global shortage of skilled IT

professionals, making it difficult for organizations to find and retain the talent needed

to manage their IT infrastructures. Automation helps bridge this gap by performing

tasks that would otherwise require specialized skills and expertise.

o Example: Small and medium-sized enterprises (SMEs) often struggle to afford

dedicated IT staff. An autonomous AI system can provide these businesses

with the necessary IT support without the need for extensive human resources.

• Minimizing Human Error: Human error is a leading cause of system downtime and

security breaches. Automating system administration tasks reduces the risk of

mistakes that can lead to significant disruptions and vulnerabilities.

o Example: Automated processes can ensure that configurations are applied

consistently across all systems, reducing the likelihood of errors that could

compromise security or performance.

• Rapid Response to Issues: Automated systems can detect and respond to issues

much faster than human administrators. This capability is crucial for maintaining high

availability and performance in modern IT environments.

o Example: An AI system can continuously monitor server performance and

automatically execute corrective actions when anomalies are detected,

ensuring minimal downtime.

https://larscornelissen.com/
https://larscornelissen.com/

2024 Minor Programme HAN University of Applied Sciences, Data Driven Decision Making

in Businesses

Literature Review

The development of autonomous systems using AI and machine learning has been a focal

point of research in recent years. This section reviews the relevant literature on AI-driven

automation, large language models (LLMs), and their applications in system administration

and software development.

AI-Driven Automation

AI-driven automation leverages artificial intelligence to perform tasks traditionally carried

out by humans. According to a study by McKinsey & Company (2017), automation

technologies, including AI, have the potential to take over more than 50% of current work

activities. The adoption of AI in automation aims to increase efficiency, reduce errors, and

allow human workers to focus on more strategic activities.

Large Language Models (LLMs)

Large language models like GPT-4o have shown remarkable capabilities in understanding

and generating human-like text. OpenAI's research (2022) demonstrates that LLMs can

perform a wide range of tasks, including language translation, summarization, and even basic

reasoning. The application of LLMs in system automation is relatively new, but early results

indicate significant potential for improving operational efficiency.

Automation in Software Development

Automation in software development has primarily focused on continuous

integration/continuous deployment (CI/CD) pipelines, automated testing, and code

generation. AI-driven approaches are expanding these capabilities. A study by Microsoft

Research (Sadowski et al., 2018) highlights the use of AI to predict code defects and suggest

fixes. Integrating LLMs into development environments promises to further streamline

coding, debugging, and deployment processes.

Challenges and Considerations

Despite the advancements, several challenges persist in the implementation of AI-driven

automation:

• Security Concerns: Automating administrative tasks introduces security risks, such

as unauthorized access and execution of harmful commands.

• Performance and Scalability: Ensuring the AI system performs efficiently under

varying loads is crucial.

• Accuracy and Reliability: The AI must make accurate decisions consistently to be

trusted with critical tasks.

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

8

Methodology

This section outlines the methodology employed in developing the autonomous AI for

managing an Ubuntu VM. The project involved several phases, each building upon the

previous one to enhance the AI's capabilities and performance. The primary tools and

technologies used include Python, Paramiko for SSH communication, and OpenAI's GPT-4o

for language processing.

Initial Setup and Version 1

The initial version of the project focused on establishing a basic SSH connection using the

Paramiko library. This version allowed the AI to execute commands on the Ubuntu VM but

lacked the ability to operate in interactive mode, limiting its effectiveness.

• Tools Used: Python, Paramiko

• Capabilities: Basic command execution via SSH

• Limitations: No interactive mode, limited functionality

import paramiko

hostname = "localhost"
port = 3022
username = ---REDACTED---
password = ---REDACTED---

ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(hostname, port, username, password)
stdin, stdout, stderr = ssh.exec_command("ls")
print(stdout.read().decode())

Figure 1 Initial Setup and Version 1

Enhanced Memory and Storage

To improve the AI's performance, memory management capabilities were added. This

involved using MongoDB to store logs, credentials, and to-do items. Functions were created

to manage these memory elements, allowing the AI to maintain context and state across

sessions.

• Tools Used: Python, MongoDB

• Capabilities: Storing and retrieving logs, credentials, and to-do items

• Benefits: Improved context management and continuity

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

9

from pymongo import MongoClient

client = MongoClient('localhost', 27017)

db = client['ai_memory']

def add_memory(memory_type, content, context=None, tags=None, summary=None):

 memory = {

 "type": memory_type,

 "content": content,

 "context": context,

 "tags": tags,

 "summary": summary

 }

 return db.memory_collection.insert_one(memory).inserted_id

Figure 2 Enhanced Memory and Storage

Version 2 - GUI Interaction

In the second version, the focus shifted to controlling the VM using screenshots, enabling the

AI to interact with the GUI via mouse and keyboard actions. This was achieved using the

PyAutoGUI library and OCR for text recognition. However, this approach faced challenges

with coordinate accuracy and processing speed.

• Tools Used: Python, PyAutoGUI, OpenCV, Tesseract OCR

• Capabilities: GUI interaction using mouse and keyboard

• Limitations: Slow processing, inaccurate coordinates

import pyautogui

import cv2

import pytesseract

def find_word(find_me, image_path):

 image = cv2.imread(image_path)

 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 data = pytesseract.image_to_data(gray, config='--psm 6')

 for i, word in enumerate(data.splitlines()):

 if i == 0:

 continue

 word = word.split()

 if len(word) == 12 and word[11] == find_me:

 x, y, w, h = int(word[6]), int(word[7]), int(word[8]),

int(word[9])

 pyautogui.click(x + w // 2, y + h // 2)

 return (x, y, w, h)

Figure 3 Version 2 - GUI Interaction

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

10

Return to SSH

The final version reverted to SSH with enhanced capabilities, leveraging structured prompts

to guide the AI's actions efficiently. The AI could run bash commands, manage memory, and

interact with the file system, providing a robust solution for autonomous VM management.

• Tools Used: Python, Paramiko, OpenAI GPT-4o

• Capabilities: Advanced command execution, memory management, context

awareness

• Benefits: Improved performance and reliability

def get_prompt():
 return f"""

 You are an autonomous AGI that has SSH access to a remote server that

is all yours.
 You can do anything in the terminal.

 MAIN GOAL:
 {get_main_goal()}

 Make sure to make frequent todo items to make sure you can pick up

where you left off if you stop working. Make frequent memory items so you can

remember what you have done already, add the tag 'system' to always give it to

your next context windows. ...
 Don't give context in text. Always respond in JSON. You should always

return in the following format:
 {{
 "action": "function_name",
 "thoughts": "your thoughts on why you chose to do this",
 "keywords_for_next_query": ["Search term 1", "Search term 2"],
 "body": {{
 "key1": "value1",
 "key2": "value2",
 ... (see above for more details)
 }}
 }}
 """

Figure 4 Return to SSH

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

11

Implementation Details

This section delves into the technical implementation of the autonomous AI for managing an

Ubuntu VM via SSH. It covers the detailed workings of memory and logs, API integration,

and thread management to ensure efficient and reliable operations.

Memory and Logs

To facilitate efficient task management and continuity, the system employs a robust memory

management mechanism using MongoDB. This includes storing and retrieving logs,

credentials, and to-do items, ensuring the AI retains context across different sessions.

• Memory Storage: The AI can add, retrieve, and delete various types of memory,

including bash logs, message logs, and to-do items.

import datetime

import memory

def add_bash_log(log):

 log["timestamp"] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')

 memory.add_bash_log(log)

def add_message_log(message):

 message["timestamp"] = datetime.datetime.now().strftime('%Y-%m-%d

%H:%M:%S')

 memory.add_message_log(message)

def add_todo_item(todo_item):

 return memory.add_todo_item(todo_item)

def get_todo_items():

 return memory.get_todo_items()

def remove_todo_item(todo_id):

 return memory.remove_todo_item(todo_id)

Figure 5 Memory and Logs

• Credential Management: Secure storage and retrieval of credentials ensure the AI

can access necessary resources without exposing sensitive information.

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

12

def add_credential(app, username, password):

 credential = {

 "app": app,

 "username": username,

 "password": password

 }

 return memory.add_credential(credential)

def get_credentials(app):

 return memory.get_credentials(app)

def remove_credential(app):

 return memory.remove_credential(app)

Figure 6 Credential Management

API Integration

The system includes an API for executing key functions such as clicking, typing, and

performing special mouse actions. This API, developed using Flask, allows the AI to control

the VM efficiently.

• Mouse Actions: The AI can perform various mouse actions including clicks, double-

clicks, and scrolling.

@app.route('/click', methods=['POST'])

def click():

 data = flask.request.json

 x = data['x']

 y = data['y']

 pyautogui.click(x, y)

 return 'Mouse clicked at ({}, {})'.format(x, y)

@app.route('/special_mouse_action', methods=['POST'])

def special_mouse_action():

 data = flask.request.json

 action = data['action']

 if action == 'scroll_up': pyautogui.scroll(1)

 elif action == 'scroll_down': pyautogui.scroll(-1)

 elif action == 'double_click': pyautogui.doubleClick()

 elif action == 'right_click': pyautogui.rightClick()

 return 'Performed special mouse action: {}'.format(action)

Figure 7 Mouse Actions

• Keyboard Actions: Functions for typing text and pressing key combinations allow

the AI to interact with the system's GUI elements.

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

13

@app.route('/type_text', methods=['POST'])

def type_text():

 data = flask.request.json

 text = data['text']

 pyautogui.typewrite(text)

 return 'Text "{}" typed'.format(text)

@app.route('/key_combination', methods=['POST'])

def key_combination():

 data = flask.request.json

 keys = data['keys']

 pyautogui.hotkey(*keys)

 return 'Key combination {} pressed'.format(keys)

Figure 8 Keyboard Actions

Thread Management

To ensure the system remains responsive, especially during long-running operations, thread

management techniques were employed. This allows the AI to execute commands without

blocking other tasks.

def run_bash(command):

 def run_command(results):

 stdin, stdout, stderr = ssh.exec_command(command)

 stdout.channel.recv_exit_status() # Wait for the command to complete

 output = stdout.readlines()

 error_output = stderr.readlines()

 # Combine standard output and error output, if needed

 combined_output = output + error_output

 add_bash_log({

 "command": command,

 "output": output,

 "error_output": error_output

 })

 results[0] = "\n".join(combined_output[-50:]) if combined_output else

"No output"

 # Create a thread to run the command

 results = [None]

 t = Thread(target=run_command, args=(results,))

 t.start()

 t.join(timeout=30)

 return results[0] if results[0] else "Command timed out. Did you run a

blocking command? Always prevent prompts"

Figure 9 Thread Management

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

14

Results and Discussion

This section presents the outcomes of the project, discussing the performance, challenges

encountered, and the overall effectiveness of the autonomous AI system in managing the

Ubuntu VM.

Performance

The autonomous AI system demonstrated significant improvements in performance and

functionality through its various iterations. Key performance metrics include:

1. Command Execution: The AI successfully executed a wide range of bash

commands, showcasing its ability to manage the VM efficiently.

2. Memory Management: The use of MongoDB for memory storage allowed the AI to

maintain context and state across sessions, enhancing its decision-making capabilities.

3. Response Time: The final SSH-based version showed a marked improvement in

response time compared to the GUI interaction version, which was hindered by slow

processing and coordinate inaccuracies.

Key Achievements

1. Autonomous Operation: The AI operated independently, managing tasks such as file

manipulation, system monitoring, and software installation without human

intervention.

2. Enhanced Context Awareness: Through structured prompts and memory

management, the AI maintained a high level of context awareness, ensuring continuity

and efficiency in task execution.

3. Effective API Integration: The integration of APIs for mouse and keyboard control,

although secondary to the final SSH approach, demonstrated the AI's versatility in

interacting with different interfaces.

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

15

Challenges and Solutions

Several challenges were encountered during the development of the autonomous AI system,

and various solutions were implemented to address them:

1. Coordinate Accuracy in GUI Interaction:

• Challenge: The AI struggled with accurate coordinate identification in the GUI

interaction version.

• Solution: The project reverted to SSH-based control, which provided more reliable

command execution without the need for precise GUI interactions.

1. Performance Bottlenecks:

• Challenge: The GUI interaction version experienced slow processing times due to

OCR and image processing overheads.

• Solution: Transitioning back to SSH improved performance by eliminating the need

for image processing and relying on direct command execution.

1. Security Concerns:

• Challenge: Automating administrative tasks raised potential security risks.

• Solution: Although security was intentionally deprioritized in the project's scope (to

avoid updates and firewall configurations), future iterations could incorporate more

robust security measures.

User Experience

User feedback was instrumental in refining the AI's capabilities. The iterative development

process, combined with continuous testing and adjustments, ensured that the system met the

desired functional requirements.

• Ease of Use: The AI's ability to execute complex tasks with minimal input made it a

valuable tool for automating routine system administration tasks.

• Reliability: By maintaining context and state through memory management, the AI

proved to be reliable and consistent in its operations.

Summary of Results

The project successfully developed an autonomous AI capable of managing an Ubuntu VM

via SSH. The final version of the system demonstrated robust performance, efficient memory

management, and reliable command execution. The transition from GUI interaction to SSH

control significantly improved the system's responsiveness and accuracy.

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

16

Conclusion

The development of Autodev, an LLM-driven automatic developer, has demonstrated the

significant potential of AI in automating tasks. Through various iterations, the project has

showcased the versatility and effectiveness of using GPT-4o to manage an Ubuntu VM via

SSH.

Key Findings

• Efficiency: The AI successfully executed a wide range of commands autonomously,

significantly reducing the need for human intervention.

• Context Management: The integration of memory management using MongoDB

allowed the AI to retain context and state across sessions, enhancing its decision-

making and operational continuity.

• Performance Improvement: Transitioning from GUI interaction to SSH control

markedly improved the system's response time and accuracy, addressing performance

bottlenecks and coordinate inaccuracies.

Challenges Addressed

• Coordinate Accuracy and Performance: Switching to SSH eliminated the issues

related to GUI interaction, providing a more reliable and efficient control mechanism.

• Security: While the project intentionally deprioritized security to focus on

functionality, it highlighted areas for future improvements, such as incorporating

robust security measures for automated systems.

Future Work

Future iterations of this project could explore the following areas:

2. Enhanced Security: Integrating security measures to safeguard against unauthorized

access and command execution.

3. Scalability: Extending the AI's capabilities to manage multiple VMs simultaneously,

improving scalability for larger deployments.

4. Advanced Memory Management: Developing more sophisticated memory management

techniques to further enhance context awareness and operational efficiency.

5. User Interface Improvements: Refining the user interface for easier interaction and

monitoring of the AI's activities.

Final Thoughts

The successful development and deployment of Autodev underscore the transformative

potential of AI in automating complex tasks. By leveraging the power of large language

models like GPT-4o, this project has paved the way for more advanced and efficient

automation solutions in the future.

https://larscornelissen.com/
https://larscornelissen.com/

Lars Cornelissen June, 2024 HAN University, Arnhem,

3DMiB

17

References

1. McKinsey & Company. (2017). Shaping the future of work in Europe’s nine digital

front runner countries. Retrieved from

https://www.mckinsey.com/~/media/mckinsey/featured%20insights/europe/shaping%

20the%20future%20of%20work%20in%20europes%20nine%20digital%20front%20r

unner%20countries/shaping-the-future-of-work-in-europes-digital-front-runners.pdf

2. OpenAI. (2022). GPT-4 research. Retrieved from https://openai.com/index/gpt-4-

research/

3. Sadowski, C., van Gogh, S., Jaspan, C., Söderberg, E., & Winter, C. (2018).

Tricorder: Building a program analysis ecosystem. Proceedings of the 40th

International Conference on Software Engineering: Software Engineering in Practice.

Retrieved from https://dl.acm.org/doi/pdf/10.1145/3183519.3183525

https://larscornelissen.com/
https://larscornelissen.com/
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/europe/shaping%20the%20future%20of%20work%20in%20europes%20nine%20digital%20front%20runner%20countries/shaping-the-future-of-work-in-europes-digital-front-runners.pdf
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/europe/shaping%20the%20future%20of%20work%20in%20europes%20nine%20digital%20front%20runner%20countries/shaping-the-future-of-work-in-europes-digital-front-runners.pdf
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/europe/shaping%20the%20future%20of%20work%20in%20europes%20nine%20digital%20front%20runner%20countries/shaping-the-future-of-work-in-europes-digital-front-runners.pdf
https://openai.com/index/gpt-4-research/
https://openai.com/index/gpt-4-research/
https://dl.acm.org/doi/pdf/10.1145/3183519.3183525

